Отдел образования Администрации Тальменского района Алтайского края Муниципальное казенное общеобразовательное учреждение

«Среднесибирская средняя общеобразовательная школа»
Тальменского района Алтайского края

ПРИНЯТО методическим советом Протокол №3 от 29.08. 2015

Рабочая программа элективного курса «Физика в задачах» для 10-11-го классов среднего общего образования базового уровня на 2015-2016 уч.г.

Составитель Пономарёва О.П., учитель физики

Среднесибирский 2015

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

программа отражает содержание курса физики общеобразовательных учреждений 10 – 11 классов, завершающего концентрум. Она учитывает цели обучения физике учащихся средней школы и соответствует государственному стандарту физического образования. Материал излагается на теоретической основе, включающей вопросы механики Ньютона, термодинамики, молекулярно – кинетической теории, электродинамики, оптики и квантовой физики. Курс «Физика в задачах» рассчитана на изучение в течение двух учебных лет по одному часу в неделю. Необходимость создания данной программы продиктована тем, что требования к подготовке по физике выпускников основной школы возросли, в то время как количество часов сокращено до двух часов в неделю.

Курс предполагает проведение занятий по лекционно — семинарской системе с использованием элементов диалога, задач, демонстраций, предоставляя тем самым инструментарий для последующего самостоятельного решения качественных, количественных и графических задач индивидуально или в группах.

Цели:

- более глубокое изучение основ физики через решение задач технического содержания,
 - подготовка выпускников к сдаче ЕГЭ,
- формирование метода научного познания явлений природы как базы для интеграции знаний и развития мышления учащихся.

Содержание курса

Материал, отобранный для данного элективного курса представляет собой подборку качественных и расчетных задач, позволяющий сделать изучение теоретического материала более осознанным и глубже понять законы, объясняющие природные явления т технически процессы.

Модуль «Кинематика» предлагает рассмотрение ряда понятий: тангенциальное, нормальное и полное ускорения, угловая скорость и угловое ускорение для закрепления которых предусматривается решение задач.

Модуль «Динамика» на основе базовой теории дает возможность подробнее рассмотреть традиционно сложные для учащихся задачи на движение систем связанных тел по горизонтали и наклонной плоскости. Кроме того, здесь подробно рассматривается динамика тел, движущихся по криволинейным траекториям.

Модуль «Законы сохранения» предусматривает изучение физических принципов реактивного движения и вывода уравнения Мещерского. В этой же части предлагается решение комбинированных задач, охватывающих материал всего раздела «Механика», что соответствует уровню С на ЕГЭ.

Модуль «Основы МКТ вещества. Реальный газ. Кристаллы» позволяет изложить ряд вопросов традиционно рассматриваемых в факультативном курсе: реальный газ, сжижение газов, облака, осадки;

кристаллы. Задачи, решаемые в этой части спец курса, соответствуют уровням В и С по материалам ЕГЭ.

В модуле «Электростатические явления» рассматривается плотность электрического заряда, решаются задачи на расчет соединения конденсаторов.

Могут быть рассмотрены вопросы электризации тел и поведение диэлектриков в электрическом поле.

В модуле «Электромагнетизм» предполагается уделить особое внимание решению комбинированных задач, при анализе которых используются знания, умения и навыки по разделам «Механика» и «Электродинамика».

Модуль «Электромагнитные колебания и волны» на основе базовой теории дает возможность подробнее рассмотреть традиционно сложные для учащихся задачи на расчет электрических цепей переменного тока, выполнение векторных диаграмм, расчет параметров волны. Здесь будет подробнее рассмотрено явление резонанса в электрических цепях.

Модуль «Оптика» предусматривает рассмотрение основных задач геометрической и волновой оптики и вывода формулы тонкой линзы. Предполагается решение комбинированных задач, учитывающих корпускулярно-волновой дуализм света, что соответствует уровню С на ЕГЭ.

В модуле «Квантовая и атомная физика» рассматриваются вопросы: излучение абсолютно черного тела, трудности теории Бора, оптические квантовые генераторы.

Кроме того курс предполагает решение задач уровня В и С по материалам ЕГЭ, что позволяет выпускникам увереннее чувствовать себя на экзамене и показать свои знания в наиболее полном объеме.

Способы реализации: урочная форма.

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ: развитие интереса к предмету, овладение личностным опытом самореализации, расширение кругозора в области физики, развитие умения решать задачи разных видов.

Поурочно-тематический план. 10 класс

$N_{\underline{o}}$	Наименование разделов и тем	Всего	Контрольные
П.П.	тапменование разделов и тем	часов	и диагности-
11.11.		14000	ческие
1	Блок 1. Кинематика	6	1
1.1	Вводный инструктаж по охране труда. Вводное занятие	U	•
1.2	Уравнение траектории движения тела на плоскости		
1.3	Равнопеременное движение и его графическое представление		
1.4	Вращательное движение твёрдого тела. Тангенциальное,		
1,4	нормальное и полное ускорение.		
1.5	Угловая скорость и угловое ускорение		
1.6	Диагностическая работа		+
2	Блок 2. Основы динамики. Применение законов	7	1
_	динамики к решению задач	,	1
2.1	Динамика прямолинейного движения (наклонная		
2.1	плоскость)		
2.2	Динамика прямолинейного движения (связанные тела)		
2.3	Динамика вращательного движения		
2.4	Движение в пол силы тяжести		
2.5	Движение планет и искусственных спутников		
2.6	Обобщающий урок		
2.7	Диагностическая работа		+
3	Блок 3. Закон сохранения	6	1
3.1	Реактивное движение	U	1
3.2	Закон сохранения и превращения энергии в механике		
3.3	Закон сохранения и превращения энергии в механике		
3.4	Применение законов сохранения к абсолютно упругим		
3.4	столкновениям		
3.5	Применение законов сохранения к абсолютно		
3.3	неупругим столкновениям		
3.6	Диагностическая работа		1
4	Блок 4. Динамика периодического движения	3	1
4.1	Гармонические колебания	3	1
4.1			
	Математический и пружинный маятник и		
4.3	Контрольная работа	2	+
5	Блок 5. Элементы теории относительности	3	
5.1	Инварианты и изменяющиеся величины		
5.2	Относительность длины, массы, времени, скорости		
5.3	Примеры решения задач	4	1
6	Блок 6. Основы МКТ вещества. Реальный газ.	4	1
<i>c</i> 1	Кристаллы		
6.1	Температура, способы её измерения. Различные		
()	температурные шкалы		
6.2	Реальные газы. Средняя длина свободного пробега.		
	Сжижение газов, облака и осадки.		
6.3	Зависимость агрегатного состояния вещества от		
C 1	температуры и давления.		
6.4	Диагностическая работа		+
7	Блок 7. Электростатические явления	5	
7.1	Плотность электрического заряда. Напряжённость		
	заряжённой сферы, плоскости.		

	Резервный урок Итого	1	
7.5	Повторение		
7.4	Диагностическая работа		2
7.3	Энергия электростатического поля		
7.2	Соединение конденсаторов и их расчёт.		

Поурочно-тематический план. 11 класс

№ Наименование разделов и тем		
ла паниспование разделов и тем		Контрольные
п.п.	Всего	и диагности-
	часов	ческие
1 Блок 1. Законы постоянного электрического тока	8	1
1.1 Закон Ома для участка цепи. Соединение проводников	3.	
1.2 Закон Ома для полной цепи		
1.3 Расчёт параметров цепи, имеющей смешан соединение (источников и нагрузки)	ное	
1.4 Тепловое действие тока. Работа и мощно электрического тока	ость	
1.5 КПД электрической цепи		
1.6 Расчёт параметров цепи, содержащей генераторы электродвигатели	или	
1.7 Закон электролиза		
1.8 Диагностическая работа		+
2 Блок 2. Электромагнетизм	6	1
2.1 Движение частиц в магнитном поле. Проводник с токо магнитном поле	ОМ В	
2.2 Закон электромагнитной индукции. Магнитный поток		
2.3 Самоиндукция. Индуктивность.		
2.4 ЭДС индукции проводника, движущегося в магнит поле	НОМ	
2.5 ЭДС индукции проводника, движущегося в магнит поле	НОМ	
2.6 Диагностическая работа		+
3 Блок 3. Электромагнитные колебания и волны	6	1
3.1 Электромагнитные колебания. Расчёт параме колебательного контура	тров	
3.2 Закон Ома для электрической цепи переменного тока		
3.3 Резонанс в электрических цепях		
3.4 Электромагнитные волны. Расчёт параметров волны		
3.5 Трансформация электрической энергии.		
3.6 Диагностическая работа		+
4 Блок 4. Оптика	7	1
4.1 Тонкая линза: нахождение объекта по ходу лучей.		
4.2 Формула тонкой линзы. Расчёт параметров линзы изображения.	ы и	
4.3 Полное внутреннее отражение		
4.4 Ход лучей в призме		
4.5 Волновая оптика. Интерференция и дифракция света		
4.6 Расчёт параметров дифракционной решётки		
4.7 Диагностическая работа		+
5 Блок 5. Квантовая и атомная физика	7	1

5.1	Законы излучения абсолютно чёрного тела.		
5.2	Фотон, его характеристики. Кванты и атомы.		
5.3	Уравнение Эйнштейна. Квантовые свойства света		
5.4	Квантовые постулаты Бора.		
5.5	Состав атомного ядра. Энергия связи		
5.6	Ядерные реакции. Энергетический выход ядерных реакций.		
5.7	Диагностическая работа		+
	Итого	34	5

ЛИТЕРАТУРА

- 1.Балаш, В.А. Задачи по физике и методы их решения. М.: Просвещение, 1983.
- 2. Гольдфарб, Н.И. Физика: сборник задач для 9-11 кл.- М.: Просвещение, 1997.
- 3. Каменецкий, С.Е., Орехов, В.П. Методика решения задач по физике. М.: Просвещение, 1988.
- 4. Касьянов, В.А. Физика -10 и Физика -11:учебники. М.: Дрофа, 2006.
- 5. Яворский, Б.М., Детлаф, А.А. Справочник по физике. М.: Наука, 2005.